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1.1 Search and Information retrieval

Informatin retrieval (IR) is finding material (usuall documents) of an unstructured natue (usu-
ally text) that satisfies an information need from within a large collections (usually stored on
computers).

Why is this an important matter ?

• Search on the web is a daily activity for many people throughout the world
• Search and communication are most popular uses of a computer
• Applications involving search are everywhere
• The field of computer science that is most involved with R&D for search is Information

Retrieval

"Information Retrieval is a field concerned with the structure, analysis, organisation, storage,
searching and retrieval of information" - Salton, 1968

This general definition can be applied to many types of information and search applications.
The primary focus of IR since the 50s has mostly been on text and documents.
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1.1.1 The notion of Document

1.1.1.1 What is a document ?

Examples: web pages, emails, books, news stories, scholarly papers, text messages, Ms Office
douments, PDFs, forum postings, patents, IM sessions, etc.

Common properties :

• Significant text content
• Some structure (e.g. title, author, date for papers, subject, sender and destination for

emails, etc.)

1.1.1.2 Documents vs. Database records

Database records

• SQL is very structured
• Database records (or tuples in a relational database) are typically mde up of well-defined

fields (or attributes), e.g. bank records with account numbers, balances, names, ad-
dresses, security numbers, dates, etc.)
• it is easy to comprare fields with well-defined semantics to queries in order to find matches.

Example for a bank database query :

• Find records with balance > $50’000 in branches located in Lausanne, Switzerland
• Matches are easily found by comparison with fields values of records.

Documents

• The query is not that much structured
• Text is in a general manner much more complicated

Example for a search engine query :

• query : bank scandals in Switzerland
• This text must be compared to the text of the entire news story

1.1.2 Comparing text

Comparing the query text to the document text and determining what is a good match is the core
issue of information retrieval.

Exact matching of words is not enough :

• Many different ways to write the same thing in a "natural language" like english.
• E.g. does a news story containing the text "bank director in Zûrich setals funds" match

the previous example query ?
• Some stories will be better matches than others
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1.1.3 Dimensions of IR

• IR is more than just text and more than just web search - although these are central.
• People doing IR work with different content (or media), different types of search applica-

tions and different tasks

Content Applications Tasks
Text Web search Ad hoc search ∗3
Images ∗1 Vertical Search ∗2 Filtering ∗4
Video ∗1 Enterprise Search Classification ∗5
Scanned docs Desktop search Question answering
Audio Forum Search
Music P2P Search

Literature Search

∗1 Search of forms, patterns, logos
∗2 This is a full domain on its own
∗3 For instance on google.com, at each new request
∗4 This is a special kind where the request is fixed but the documents flow varies
∗5 For creating portals like yahoo category, etc.

1.1.3.1 IR tasks

Ad-hoc search : Find releval documents for an arbitrary text query
Filtering : Identify relevant user profiles for a new document
Classification : Identifiy relevant labels for a document
Question answering : Give a specific answer to a question. This usually involves natural

language analysis such as on Wolfram Alpha.

1.1.4 Big issues in IR

1.1.4.1 Relevance

What is relevance ?

Simple definition : A relevant document contains the information that a person was looking for
when she submitted a query to the search engine.

A document is relevant for a specific query if it answers the question of the user.

Many factors influence a person’s decision about what is relevant, e.g. task, context, novelty,
etc. One can distinguish topical relevance (same topic) versus user relevance (everything else).

• Retrieval models define a view on relevance
• Ranking algorithms used in search engine are bases on Retrieval models.
• Most models describe statistical properties of text rather than linguistic. i.e. counting

simple text features such as words instead of parsing and analyzing the sentences.
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1.1.4.2 Evaluation

The Evaluation of a Retrieval model is about experimental procedures and measures for com-
paring system output with user expectations.

• IR evaluation methods are now used in many fields
• Typically use test collections of documents, queries and relevance judgments most com-

monly used/known as TREC collections.
• Recall and Precision are two examples of effectivness (efficacité) measures.

1.1.4.3 User and Information Needs

• Search evaluation is user-centered.
• Keyword queries are often poor descriptions of actual information needs.
• Interaction and context are often important for understanding user intent

Hence the needs for query refinement techniques such as query expansion, query sugges-
tion, relevance feedback improve ranking.

1.1.5 Three scales for IR systems

• Web Search : Search over billions of documents on Internet (e.g. google)
• Personnal information retrieval : Broad range of document but limited number (e.g.

Max OSX spotlight, search integrated in the OS)
• Enterprise, Institutional or domain-specific search : Search in collections such as

corporation’s internal documents, etc.

1.2 IR System architecture

A software architecture consists of software components, the interfaces provided by those com-
ponents, and the relationships between them. Architecture describes a system at a particular
level of abstraction.

Architecture of a search engine is determined by two requirements :

• Effectiveness (quality of results)
• Efficiency (response time and throughput)
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1.2.1 Indexing process

Text acquisition identifies and stores document for indexing
Text transformation tranforms documents into index terms or features
Index creation takes index terms and creates data structures (indexes) to support

fast searching.

1.2.1.1 Text Acquisition

→ The crawler:

• Identifies and acquires documents for search engine
• Many types : web, enterprise, desktop
• Web crawlers follow links to find documents

• Must efficiently find huge numbers of web pages (coverage) and keep them up-to-
date (freshness)
• Single site crawlers for site search
• Topical or focused crawlers for vertical search

• Document crawlers for enterprise and desktop search (Follow links and scan directories)

→ Feeds:

• Real-time streams of documents, e.g., web feeds for news, blogs, video, radio, tv
• RSS is common standard. RSS "reader" can provide new XML documents to search

engine

→ Conversion:

• Convert variety of documents into a consistent text plus metadata format, e.g. HTML,
XML, Word, PDF, etc. → XML
• Convert text encoding for different languages. e.g. using a Unicode standard like UTF-8
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→ Document data store:

• Stores text, metadata, and other related content for documents

• Metadata is information about document such as type and creation date
• Other content includes links, anchor text

• Provides fast access to document contents for search engine components, e.g. result list
generation.
• Could use relational database system, e.g. for a small indexing system ...
• ... but more typically, a simpler, more efficient storage system is used due to huge numbers

of documents (.e.g google’s BigTable)

1.2.1.2 Text transformation

→ Parser:

• Processing the sequence of text tokens in the document to recognize structural elements,
e.g., titles, links, headings, etc.
• Tokenizer recognizes "words" in the text. It must consider issues like capitalization, hy-

phens, apostrophes, non-alpha characters, separators
• Markup languages such as HTML, XML often used to specify structure

• Tags used to specify document elements, e.g., <h2> Overview </h2>
• Document parser uses syntax of markup language (or other formatting) to identify

structure

→ Stopping:

• Remove common words, e.g., "and", "or", "the", "in"
• these words are called stop words
• Some impact on efficiency and effectiveness
• Can be a problem for some queries

→ Stemming:

• Group words derived from a common stem (or lem, in french "Lemmatisation"), e.g., "com-
puter", "computers", "computing", "compute"
• Usually effective, but not for all queries
• Benefits vary for different languages

→ Link analysis:

• Makes use of links and anchor text in web pages
• Link analysis identifies popularity and community information, e.g., PageRank
• Anchor text can significantly enhance the representation of pages pointed to by links
• Significant impact on web search, less importance in other applications

→ Information Extraction:
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• Identify classes of index terms that are important for some applications, e.g., named entity
recognizers identify classes such as people, locations, companies, dates, etc.

→ Classifier:

• Identifies class-related metadata for documents

• i.e., assigns labels to documents
• e.g., topics, reading levels, sentiment, genre

• Use depends on application

1.2.1.3 Index creation

→ Document statistics:

• Gathers counts and positions of words and other features
• Used in ranking algorithm

→Weighting:

• Computes weights for index terms
• Used in ranking algorithm
• e.g., tf.idf weight : Combination of term frequency in document and inverse document

frequency in the collection

→ Inversion:

• Core of indexing process
• Converts document-term information to term-document for indexing: difficult for very large

numbers of documents
• Format of inverted file is designed for fast query processing

• Must also handle updates
• Compression used for efficiency

→ Index distribution:

• Distributes indexes across multiple computers and/or multiple sites
• Essential for fast query processing with large numbers of documents
• Many variations : Document distribution, term distribution, replication
• P2P and distributed IR involve search across multiple sites
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1.2.2 Query process

User interaction supports creation and refinement of query, display of results
Ranking uses query and indexes to generate ranked list of documents
Evaluation monitors and measures effectiveness and efficiency (primarily of-

fline)

1.2.2.1 User interaction

→ Query input:

• Provides interface and parser for query language
• Most web queries are very simple, other applications may use forms
• Query language used to describe more complex queries and results of query transforma-

tion

• e.g., Boolean queries, Indri and Galago query languages
• similar to SQL language used in database applications
• IR query languages also allow content structuration

→ Query transformation:

• Improves initial query, both before and after initial search
• Includes text transformation techniques used for documents
• Spell checking and query suggestion provide alternatives to original query
• Query expansion and relevance feedback modify the original query with additional terms

→ Results output:

• Constructs the display of ranked documents for a query
• Generates snippets to show how queries match documents
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• Highlights important words and passages
• Retrieves appropriate advertising in many applications
• May provide clusterin gand other visualization tools

1.2.2.2 Ranking

→ Scoring:

• Calculates scores for documents using a ranking algorithm
• Core component of search engine
• Basic form of score is

∑
qidi

• qi and di are query and document term weights for term i

• Many variations of ranking algorithms and retrieval models

→ Performance optimization:

Designing ranking algorithms for efficient processing :

• Term-at-a-time vs. document-at-a-time processing
• Safe vs. unsafe optimizations

→ Distribution:

• Processing queries in a distributed environment
• Query broker distributes queries and assembles results
• Caching is a form of distributed searching

1.2.2.3 Evaluation

The whole purpose of evaluation is to help make the next queries better solved.

→ Logging:

• Logging user queries and interaction is crucial for improving search effectiveness and
efficiency
• Query logs and click through data used for query suggestion, spell checking, query

caching, ranking, advertising search, and other components

→ Ranking analysis: Measuring and tuning ranking effectiveness

→ Performance analysis: Measuring and tuning system efficiency

1.3 IR Models

TODO Put first image of page 21
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1.3.1 Ad-hoc Retrieval

• Our goal : to develop a system to address the ad hoc retrieval task
• Ad hod retrieval : the most stdandard IR task. In this context, a systems aims to provide

documents from within the collection that are relevant to an arbitrary user information
need, communicatet to the system by means of a one-off, user-initiated query

The user express a need of information through a request→ this request needs to be repre-
dented under a boolean, algebraic, etc. form, e.g. "Java AND Hibernate AND Spring".

1.3.2 Query relevance

• An information need is the topic about which the user desires to know more, and is differ-
entiated from a query, which is what the user conveys to the computer in an attempt to
communicate this information need.
• A document is relevant if it is one that the user perceives as containing information of

value with respect to their personnal information need.
• A document is relevant if is matches the information need of the user (→ this can be hard

to define)

1.4 Practice

1.4.1 Stopping and Stemming

Stopping consists in removing most commons words with no relevance at all (such as "and",
"or", etc.). Stemming consists in grouping words on a common stem.
Both are text transformation operations applied before indexing.

1.4.1.1 Advantages

What are the advantages of both techniques related to the search ?

Stopping:

• Reduction of the index size
• The precision is potentially increased
• Gain in terms of performance (less terms to consider)

Stemming:

• The dictionnary is reduced: gain in terms of storage space and performance
• The scope is enlarged and we get a search that is more tolerant in language variations
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1.4.1.2 Drawbacks

What are the drawback of both techniques related to the search ?

Stopping:

• Potential precision loss : what of someone searches for the exact move title "Harry and
Sally" ?

Stemming:

• Lost of information: potential precision loss.
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2.1 Principle

The boolean retrieval model is a model for information retrieval in which we can pose any query
which is in the form of a Boolean expression of terms

• Boolean expression: terms are combined with operators AND, OR and NOT
• Example of a query : "Ceasar AND Brutus"

The search engines returns all documents that satisfy the Boolean expression. Obviously
this model is very limited as it is not able to return the document that matches only partially the
request not is it able to perform any ranking, i.e search engines such as google use a different
model.
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2.2 Term-document incidence matrix

2.2.1 Introductory example

Question : which plays of Shakespeare contain the words Brutus AND Caesar but NOT Calpur-
nia ?

• One could grep all of Shakespeare’s plays for Brutus and Caesar, then strip out lines
containing Calpurnia?

• Why is that not the solution ?

• Slow (for large corpora)
• NOT Calpurnia is non-trivial
• Other operations (e.g., find the word Romans near countrymen) not feasible
• Ranked retrieval (best documents to return)

2.2.2 Term-document incidence matrix

The way to avoid linearly scanning the texts for each query is to index the documents in advance.
The following is a binary representation of the index, the term-document incidence matrix:

• Entry is 1 if terms occurs. Example : Calpurina occurs in Julius Ceasar.
• Entry is 0 if terms does not occurs. Example : Calpurina doesn’t occur in The Tempest.
• We record for each document whether it contains each word out of all the words Shake-

speare used.
• Terms are the indexed units : they are usually words but may also be names, symbols,

etc.

Now dependening on whether we look at the matrix rows or columns, we can have:

• a vector for each term, which shows the document it appears in, or
• a vector for each document, showing the terms that occur in it.
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2.2.3 Answers to query

To answer the query Brutus AND Ceasar AND NOT Calpurnia :

• Take the vectors for Brutus, Ceasar and the complement of the vector for Calpurnia
• 110100 AND 110111 AND 101111 = 100100
• This the answer to this query are "Anthony and Cleopatra" and "Hamlet"

2.2.4 The problem : bigger collections

• Consider N = 106 documents, each with about 1000 words
• On averade 6 bytes per token⇒ size of document collection is about 6Gb.
• Assume there is M = 500’000 distinct terms in the collection ⇒ M = 500’000 X 106 = half

a trillion 0s and 1s.
• BUT the matrix has no more than a billion 1s⇒ Matrix is extremely sparse (few 1s for all

the 0s)

We have to find a better representation for the matrix. The idea is to store only the 1s. This
is what we do with inverted indexes.

2.3 Inverted index

For each term t, we must store a list of all documents that contain t→ identified each by a docID
= document serial number.
This docID is typically assigned during the index construction by giving sucvcessive integers to
each new document that is encountered.
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Inverted indexs construction :
1. Collect the documents to be indexed:

Friends, Romans, countrymen.

So let it be with Caesar ...
2. Tokenize the text, turning each document into a list
of tokens:
Friends Romans countrymen So ...

3. Do linguistic preprocessing, producing a list of nor-
malized tokens, which are the indexing terms:
Friends Romans countrymen So ...

4. Index the documents that each term occurs in by cre-
ating an inverted index, consisting of a dictionary and
postings.

This is considered an inversed index because the term gives the document list, and not the
other way around. The term inverted is actually redundant as an index always maps back from
terms to the parts of a document where they occur.

2.3.1 Token sequence

2.3.2 Sort postings

The postings are lexically sorted.
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2.3.3 Dictionary and Postings

First a bit of a terminology:

• We use the term dictionnary for the whole data structure.
• We use the term vocabulary for the set of terms.

Create posting lists, determine document frequency: Structure of storage:

2.3.4 Query processing

How do we process a query with the index we just built ?

2.3.4.1 Simple conjunctive query - support example

We will consider here the following query: Brutus AND Calpurnia. In order to find all matching
documents using inverted index, one needs to:
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1. Locate Brutus in the Dictionary;
2. Retrieve its postings.
3. Locate Caesar in the Dictionary;
4. Retrieve its postings.
5. "Merge" - Intersect - the two postings:
6. Return intersection to user

The merge - intersecting two postings list :

Principle:

• Crucial : the lists need to be sorted
• Walk through the two postings list with 2 pointers. Always move the pointer on the littlest

element.
• When both pointer point at the same value, return the value in the intersecting list result.

• The intersection calculation occurs in time linear to the total number of posting entries
• If the list lenght are x and y, the merge takes O(x + y) operations

2.3.4.2 INTERSECTION - Intersecting two postings lists

INTERSECT(p1, p2)
1 answer ← <>
2 while p1 6= NIL and p2 6= NIL
3 do if docID(p1) = docID(p2)
4 then ADD(answer, docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 ← next(p1)
9 else p2 ← next(p2)
10 return answer

One should note that if both lists are very similar, the algorithm behaves quite fast as both
list are walked through simultaneously (see 5-6).

2.3.4.3 UNION - Unifying two postings lists

(Difference with intersection are underlined in blue.
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UNION(p1, p2)
1 answer ← <>
2 while p1 6= NIL and p2 6= NIL
3 do if docID(p1) = docID(p2)
4 then ADD(answer, docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then
9 ADD(answer, docID(p1))
10 p1 ← next(p1)
11 else
12 ADD(answer, docID(p2))
13 p2 ← next(p2)
14 # Now the problem is one list could be
15 # shorter that the other one
16 while p1 6= NIL ; do
17 ADD(answer, docID(p1))
18 p1 ← next(p1)
19 while p2 6= NIL ; do
20 ADD(answer, docID(p2))
21 p2 ← next(p2)
22 return answer

The principle here is always to add the values which are in both lists (4-7) and the littlest
value as well it is guaranteed not to be in the other list.

Between 14-21 we take into consideration cases where one list is shorter than the other
one quite easily. Simply both list are analyzed for remaining stuff which is added to the unified
results.

2.3.4.4 INTERSECTION with negation - AND NOT

A naive implementation of the query y AND (NOT y) would be to evaluate (NOT y) first as a new
postings list, which takes O(N) time, and the merge it with x. Therefore, the overall complexity
will be O(N).

An efficient postings merge algorithm to evaluate x AND (NOT y) is:

(Difference with usual INTERSECTION is shown in red)

INTERSECT_NOT_SECOND (p1, p2)
1 answer ← <>
2 while p1 6= NIL and p2 6= NIL
3 do if docID(p1) = docID(p2)
4 then ADD(answer, docID(p1))
5 p1 ← next(p1)
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6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then ADD(answer, docID(p1))
9 p1 ← next(p1)
10 else p2 ← next(p2)
11 return answer

Same principle as UNION: we know that if the current p1 docID is the smallest, we won’t find
it in the other list.

2.4 Boolean queries

→ Exact match !

• The Boolean retrieval model is being able to ask a query that is a Boolean expres-
sion:

• Boolean Queries are queries using AND, OR and NOT to join query terms
• Views each document as a set of words
• Is precise: document matches condition or not.
• Perhaps the simplest model to build an IR system on

• Primary commercial retrieval tool for 3 decades.
• Many professional searchers still like the Boolean model: you know exactly what you

are(will be) getting.
• Many search systems you still use are Boolean: Email, library catalog, Mac OS X Spotlight

2.4.1 Example: Westlaw

• Largest commercial (paying subscribers) legal search service (started 1975; ranking
added 1992)
• Tens of terabytes of data; 700,000 users
• Majority of users still use boolean queries

2.5 Query Optzimization

• What is the best order for query processing?
• Consider a query that is an AND of n terms.
• For each of the n terms, get its postings, then AND them together.
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2.5.1 Process in increasing frequency order

Simple and efficient idea : process in order of increasing frequency - start with the small-
est lists.
Start with the shortest postings list, then keep cutting further.

This requires one to keep the Document frequency for all terms. In this implementation, that
simply is the size of the lists.

In this example, we process first Caesar, then Calpurnia, then Brutus.

One should not that this optimisation doesn’t necessarily guarantee that the processing order
will be optimal. There are simple counter-examples. For instance one can imagine a case where
the two biggest amongst dozens of lists have no intersection at all, the optimal order in this case
would be to process the two biggest first and as they have no intersection the whole processing
would be over.

2.5.2 More general optimization

• The goal is to be able to optimize more complicated queries, e.g., (madding OR crowd)
AND (ignoble OR strife).
• Get Document frequencies for all terms.
• Estimate the size of each OR by the sum of its doc. freq.’s (conservative).
• Process in increasing order of OR sizes.

2.6 Practice

2.6.1 Inverted Index

Draw the inverted index that would be built for the following document collection:
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Doc 1 new home sales top forecast
Doc 2 home sales rise in july
Doc 3 increase in home saley in july
Doc 4 july new home sales rise

Result :

forecast → (1) 1
home → (4) 1 2 3 4
in → (2) 2 3
increase → (1) 3
july → (3) 2 3 4
new → (2) 1 4
rise → (2) 2 4
sales → (4) 1 2 3 4
top → (1) 1

2.6.2 Boolean queries

Let the following be a set of documents:

D1: SDK, Android, Google, Mobile, Software
D2: Song, Android, Radiohead, Paranoid, Yorke
D3: SDK, System, Android, Kernel, Linux
D4: Android, Mobile, Google, Software, System
D5: Mobile, Swisscom, SMS, subscription, rate

And the following be a set of boolean queries:

R1: Android OR SDK OR Google OR Mobile
R2: Android AND SDK AND Google AND Mobile

According to the boolean model, what are the documents retrieved for each query ?

R1: D1 D2 D3 D4 D5
R2: D1

Formulize a criticism of both AND and OR operators

• AND is too restrictive
• OR is too permissive

the below assumes the reader is familiar with the concepts introduced in chapter 4

Let’s assume D1, D3 and D4 are relevant. Compute recall and precision for these results com-
puted above.
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R1 = RNRRN

Recall =
|A ∩B|
|A|

=
3

3
= 1

Precision =
|A ∩B|
|B|

=
3

5
= 0.6

R2 = R

Recall =
|A ∩B|
|A|

=
1

3
= 0.33

Precision =
|A ∩B|
|B|

=
1

1
= 1
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3.1 The Problem with Boolean search

• Thus far, our queries have all been Boolean. Documents either match or don’t.
• Good for expert users with precise understanding of their needs and the collection. Also

good for applications: Applications can easily consume 1000s of results.
• Not good for the majority of users.

• Most users incapable of writing Boolean queries (or they are, but they think it’s too
much work).
• Most users don’t want to walk through 1000s of results.
• This is particularly true of web search.

3.2 Feast of famine

The problem with boolean search can be considered as "feast or famine":

• Boolean queries often result in either too few (=0) or too many (1000s) results.
• Query 1: "standard user dlink 650"→ 200,000 hits
• Query 2: "standard user dlink 650 no card found"→ 0 hits
• It takes a lot of skill to come up with a query that produces a manageable number of hits.

AND gives too few; OR gives too many.

3.3 Ranked retrieval

The basis of ranked retrieval is scoring.

3.3.1 Scoring

• We wish to return in order the documents most likely to be useful to the searcher
• How can we rank-order the documents in the collection with respect to a query?
• Assign a score - say in [0, 1] - to each document
• This score measures how well document and query "match".

Query-document matching scores, the principle:

• We need a way of assigning a score to a query/document pair
• Let’s start with a one-term query:

• If the query term does not occur in the document: score should be 0
• The more frequent the query term in the document, the higher the score (should

be)

• We will look at a number of alternatives for this.
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3.3.2 1st naive attempt: The Jaccard coefficient

• The Jaccard coefficient is a commonly used measure of overlap of two sets A and B
• jaccard(A,B) = |A ∩B|/|A ∪B|
• jaccard(A,A) = 1

• jaccard(A,B) = 0 if A ∩B = �
• Notes:

• A and B don’t have to be the same size.
• Always assigns a number between 0 and 1.

3.3.2.1 Scoring example:

What is the query-document match score that the Jaccard coefficient computes for each of the
two documents below?

• Query: "ides of march"
• Document 1: "caesar died in march"→ result : 1/5
• Document 2: "the long march"→ result : 1/6

3.3.2.2 Issues with Jaccard for scoring

• It doesn’t consider term frequency (how many times a term occurs in a document).
• Rare terms in a collection are more informative than frequent terms. Jaccard doesn’t

consider this information.
• We need a more sophisticated way of normalizing for length.

3.3.3 Term frequency

3.3.3.1 Use the frequencies of terms

Recall the binary term-document incidence matrix of the previous chapter:

From now on we will use the frequencies of terms in a Term-document count matrices.
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Consider the number of occurrences of a term in a document: Each document is a count vector
in Nv: a column below:

3.3.3.2 Bag of words model

• Vector representation doesn’t consider the ordering of words in a document
• "John is quicker than Mary" and "Mary is quicker than John" have the same vectors
• This is called the bag of words model.
• In a sense, this is a step back: The positional index was able to distinguish these two

documents.
• (We will be able to "recover" positional information later.)
• For now: bag of words model

3.3.3.3 Term frequency tf

• The term frequency tft,d of term t in document d is defined as the number of times that t
occurs in d.
• We want to use tf when computing query-document match scores. But how?
• Raw term frequency is not what we want:

• A document with 10 occurrences of the term is more relevant than a document with
1 occurrence of the term.
• But not 10 times more relevant.

• Relevance does not increase proportionally with term frequency.

3.3.3.4 Log-frequency weighting

• The log frequency weight of term t in d is :

One should note that this is simply the log in base 10 of the frequency + 1.
• 0→ 0, 1→ 1, 2→ 1.3, 10→ 2, 1000→ 4, etc.
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• Score for a document-query pair: sum over terms t in both q and d :
score :

∑
t∈q∩d(1 + log tft,d)

• The score is 0 if none of the query terms is present in the document.
• (This way we already have a first ranking using the score of each document.)

The "Score for a document-query pair" as shown above would be sufficient for a first imple-
mentation of a search system. However, it suffers from several issue that we will cover below
that will make us need a more sophisticated system.

3.3.3.5 Term frequency in the query

Related to the Term Frequency, in addition to the count of terms in the document, we sometimes
use the count of terms in the query (needed later):

tft,d : tf-document : related to the number of occurence of the term in the document.
tft,q : tf-query : related to the number of occurence of the term in the query.

3.3.4 Document frequency

• Raw term frequency as suggested above suffers from a critical problem: all terms are
considered equally important when it comes to assessing relevancy on a query. The most
scarse terms are not given a higher value.
• In fact, certain terms have little or no discriminating power in determining relevance, e.g

is, n’, and, or, as, I, etc.
• For example, a collection of documents on the car industry is likely to have the term car

in almost every document.
• We will use the document frequency(df) to capture this into computing the matching

score.

3.3.4.1 idf weight

• dft is the document frequency of t: the number of documents that contain t

• dft is an inverse measure of the informativeness of t
• Let N be the number of documents in the collection, then dft ≤ N

• We define the idf (inverse document frequency) weight of t by :

• So we use the log transformation both for term frequency and document frequency
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3.3.4.2 Examples for idf

Suppose N = 1’000’000 :

(There is one idf value for each term t in a collection:)

idft = log10(N/dft)

term dft idft
calpurnia 1 6
animal 100 4
sunday 1’000 3
fly 10’000 2
under 100’000 1
the 1’000’000 0

The idf of a rare term is high, whereas the idf of a frequent term is likely to be low.

3.3.5 Effect of idf on ranking

• idf affects the ranking of documents for queries with at least two terms
• For example, in the query "arachocentric line", idf weighting increases the relative weight

of "arachocentric" and decreases the relative weight of "line"
• idf has no effect on ranking for one term queries.
• Look at the in the example above, idft for a term that apperars in every document is 0⇒

the weight of this term will be 0 in the query⇒ its as if the term was never actually given
⇒ equivalent as using a stop word

3.4 tf-idf weighting

The idea is now to combine the definitions of term frequency and inverse document frequency,
to produce a composite weight for each term in each document.

• The tf-idf weight of a term is the product of its tf weight and its idf weight.:

wt,d = (1 + log tft,d)× (log10(N/dft))

• Best known weighting scheme in information retrieval.

• Note: the "-" in tf-idf is a hyphen, not a minus sign!
• Alternative names: tf.idf, tf x idf

• Increases with the number of occurrences within a document
• Increases with the rarity of the term in the collection
• The tf-idf weighting is a key component of several indexation systems.
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The tf.idf is a center concept in what we will see now. We will first cover the next concepts re-
quired for understanding the final solution we will be keeping for matching and ranking document
to queries.

3.4.1 1st naive query implementation : simply use tf-idf for ranking documents

This first idea consists of using the tf.idf for ranking document for a query.

Score(q, d) =
∑
t∈q∩d

tf.idft,d

This is called the overlap score measure. A too simple yet working solution could use this
score to rank results without any further step. But this is too simple to be efficient.

3.4.2 Weight matrix

How to store the weight computed for each term x document ?

Binary→ Count→ weight matrix

We have first tried binary matrix. Then we tried a count matrix. Now we are facing a weight
matrix :

Each document is now represented by a real-valued vector of tf-idf weights ∈ R

Independently of the implementation (which exceeds to scope of this document), we will
consider this matrix as a base for the rest of the lecture.. We will also consider the vectors
formed by the rows and the columns.

3.4.3 Consider documents as vectors ...

Try to represent this matrix as a set set of vectors for each document:

• So we have a |V|-dimensional vector space
• Terms are axes of the space. V terms means V dimensions
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• Documents are points or vectors in this space
• Very high-dimensional: tens of millions of dimensions when you apply this to a web search

engine
• These are very sparse vectors - most entries are zero.

3.4.4 Consider queries as vectors as well ...

• Key idea 1 : Do the same for queries: represent them as vectors in the space
• Key idea 2 : Rank documents according to their proximity to the query in this space

• proximity = similarity of vectors
• proximity ≈ inverse of distance

• Recall: We do this because we want to get away from the you’re-either-in-or-out Boolean
model.
• Instead: rank more relevant documents higher than less relevant documents.

So having a vector for the query and vectors for the document, we are able to perform
comparisons on these vectors. This is at the root of the way we will be able to rank document an
retrieve more of them according to some comparison result instead of only being able to return
some of them based on whether there in a set or not.
Here we migth be able to return a document not having a term of the query before a document
having all of them if the first document answers the query better that the second despite the
missing term.

3.4.5 Formalize vector space similarity

The whole problem is to find an efficient way to formalize the vector space proximity.

3.4.5.1 Naive (bad) idea : use euclidean distance

• distance between two points ( = distance between the end points of the two vectors)
• Euclidean distance? Euclidean distance is a bad idea ...
• ... because Euclidean distance is large for vectors of different lengths.
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In the above graphic we can see that 1 and d2 are good matches as the distribution of terms
is close. But the euclidean distance between them is huge.
We have to find something else...

3.4.5.2 Solution: Use angle instead of distance

• Key idea : Rank documents according to angle with query
• Confirm with experiment :

• take a document d and append it to itself. Call this document d’
• "Semantically" d and d’ have the same content
• The Euclidean distance between the two documents can be quite large
• The angle between the two documents is 0, corresponding to maximal similarity.

3.5 Use angle to rank document

3.5.1 From angle to cosine

• The following two notions are equivalent.

• Rank documents in increasing order of the angle between query and document
• Rank documents in decreasing order of cosine(query,document)

• Cosine is a monotonically decreasing func)on for the interval [0o, 180o]

3.5.2 length normalization

For comparing vectors, we’re much better off comparing unit vectors (vecteur unitaire). A unit
vector is the vector divided by its norm. As we will see in the next section, we will need unit
vectors to efficiently compute the cosine.

• A vector can be (length-) normalized by dividing each of its components by its length - for
this we use the L2 norm:
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‖~x‖2 =
√∑

x2i

• Dividing a vector by its L2 norm makes it a unit (length) vector (maps it on surface of unit
hypersphere)
• Effect on the two documents d and d’ (d appended to itself) from earlier slide: they have

identical vectors after length-normalization.
• Long and short documents now have comparable weights

...

3.5.3 Compare query and documents - rank documents

Now how to compare the query and the document and how to rank them ?

We compute the cosine similarity between the query and documents : co-
sine(query,document).

3.5.3.1 Principle

For each document, we compute the cosine similarity:

cos(~q,~d) = cosine similarity of ~q and ~d = cosine of angle between ~q and ~d.

where:

• qi is the tf-idf weight of term i in the query
• di is the tf-idf weight of term i in the document
• |~q| and |~d| are the lengths of ~q and ~d

3.5.3.2 Practical calculation

In practice, the calculation will be a little easier as we will manipulate length-normalized vectors.
So we will first reduce the vectors to their unit vectors.

For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):
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3.5.3.3 Cosine similarity illustrated

One can see the effect of the length-normalisation (unit vectors) and the angle between two
vectors on the following graph:

3.5.4 Cosine example

Let’s compute cosine similarity amongst three documents. How similiar are these three novels :

SaS: Sense and Sensibility
PaP: Pride and Prejudice
WH: Wuthering Heights

What we do here is compute cosine similarity against the document themselves, no query is
taken into consideration.
We want to compute :

• cos(SaS,PaP)
• cos(SaS,WH)
• cos(PaP,WH)
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3.5.4.1 Exemple Data

term SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

To simplify this weihghting, we don’t take any idf into consideration. We do however log
scaling and cosine normalisation. As we will see later, this is identified as lnc.

3.5.4.2 log-frequency weighting

On each cell, we apply x = 1 + log10(x)

term SaS PaP WH
affection 3.06 2.76 2.3
jealous 2.0 1.85 2.04
gossip 1.3 0 1.78
wuthering 0 0 2.58

3.5.4.3 Compute vector norm

Reminder: we consider here document vectors (no query vectors). Hence :

• ‖ ~Sas‖ =
√

3.062 + 2.02 + 1.32 + 02 = 3.88

• ‖ ~PaP‖ =
√

2.762 + 1.852 + 02 + 02 = 3.22

• ‖ ~WH‖ =
√

2.32 + 2.042 + 1.782 + 2.582 = 4.39

Now we divide each dimension of the vectors (that is each cell) by the corresponding vector
norm in order to have unit vectors.
Having unit vectors help us compute cosine : With unit vectors, the cosine of the angle
between the two vectors is simply the scalar product between the two vectors.

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

3.5.4.4 Compute cosine similarities between document

We’re left with a simple scalar product between the document vectors to compute similarities:
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• cos(SaS, PaP ) = 0.789× 0.832 + 0.515× 0.555 + 0.335× 0 + 0× 0 = 0.94

• cos(SaS,WH) = ... = 0.79

• cos(PaP,WH) = ... = 0.69

One should not the highest similarity is between SaS and PaP which is quite well confirmed
by the data themselves where we can see that, for instance, both doesn’t contain the term
"wuthering".

3.6 General tf-idf weighting

3.6.1 Components of tf-idf weighting

This graphic presents a notation for tf-idf weigting. It actually has many variants:

• Many search engines allow for different weightings for queries vs. documents
• Notation: denotes the combination in use in an engine, with the notation ddd.qqq (docu-

ment.query), using the acronyms from the previous table
• A very standard weighting scheme is:lnc.ltc

• Document: logarithmic q (l as first character), no idf and cosine normalization
• Query: logarithmic q (l in leftmost column), idf (t in second column), cosine normal-

ization

Note: idf is always applied on the query only. Because a term is more scarse in the docu-
ments, we want to "favorise" it in the query.

3.6.1.1 tf-idf example: lnc.ltc

Document: "car insurance auto insurance"
Query: "best car insurance
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Exercice 1 : what is N, the number of documents ?

We know idf = log10(N/df), hence 2.0 = log10(N/10′000) and hence N = 1’000’000.

Exercice 2 : Compute doc length = norm of document vector :

the norm is computed with the wt (weight - tf-idf) column of course

‖ ~doc‖ =
√

12 + 02 + 12 + 1.32 = 1.92

3.6.2 Computing cosine scores

Note: the weight matrix is this time attacked from the rows (vector of postings) for each term.

COSINE_SCORES(q)
1 float Scores[N] = 0
2 float Length[N]
3 for each query term t do # walk through terms of query
4 calculate wt,q and fetch postings list for t
5 for each pair(d, tft,d ) in postings list do # walk through documents
6 Scores[d] += wt,d x wt,q
7 Read the array Length = norms of each document
8 for each d do # walk through documents
9 Scores[d] = Scores[d] / Length[d]
10 return Top K components of Scores[] # = documents with the most weight

3.6.2.1 Simple example : nnn.nnn

Let’s imagine the query "computer science" in the following count matrix

term d1 d2 d3 d4 d5 d6 d7
... ... ... ... ... ... ... ...
database 1 0 0 0 5 0 7
computer 0 2 0 4 0 0 0
... ... ... ... ... ... ... ...
science 0 0 0 4 0 6 0
... ... ... ... ... ... ... ...
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In this simple example we wont considere idf weighting on the query terms.

1. Compute scores

docID
∑
tfquery × tfdoc

1
2 2 x 1 = 2
3
4 4 x 1 + 4 x 1 = 8
5
6 6 x 1 = 6
7

2. Compute length

Well let’s take random values as we cannot compute norm of document vectors without full
vector definiton (values for each dimension) :

docID Length
1 ...
2 5
3 ...
4 6
5 ...
6 7
7 ...

3. Adpat Scores

docID Score = Score / Length
1
2 2 / 5 = 0.4
3
4 8 / 6 = 1.33
5
6 6 / 7 = 0.86
7

3.6.3 Conclusions

3.6.3.1 Remarks

• Simple, mathematically based approach
• Consider both local (tf) and global (idf) word occurence frequencies
• Provides partial matching and ranked results
• Tends to work quite well in practice
• Allows efficient implementation for large document collections.
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3.6.3.2 Problems with vector Space Model

• Missing semantic information (e.g. word sense)
• Missing syntactic information (e.g phrase structure, word order, proximity information)
• Assumption of term independence (e.g. ignores synonomy)
• Lacks control of a Boolean model (e.g. requiring a term to appear in a document)

3.6.3.3 Implementation

In practice one cannot generate on the fly the cosine between the query and all the document
in the collection (obviously) so a bit of document filtering is required. We try to identify only the
documents that contain at least one query keyword.

3.7 Practice

3.7.1 idf and stop words

What is the idf of a term that occurs in every document ? Compare this with the use of stop
words lists.

idf = log10N/N = log101 = 0

It is 0. Hence, for a word that occurs in every document, putting in it the stop word list has
the same effect as idf weighting. The word is ignored.

3.7.2 idf logarithm base

How does the base of the logarithm in the formula idft = log(N/dft) affect the score calculation?
How does the base of the logarithm affect the relative scores of two documents on a given
query?

For any base b > 0:

idft = logb(N/dft)

= log10(b)× log10(N/dft)
= c× log(N/dft)

where c is a constant

The effect on tf.idf of each term is :
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tf − idft,q,b = tft,q × idft
= tft,q × c× log(N/dft)

= c ∗ tf − idft,q

Scores(q, d, b) =
∑
t∈q

tf − idft,q,b × tf − idft,d

= c×
∑
t∈q

tf − idft,d × tf − idft,d

So changing the base changes the score of a factor c = (logb 10) for every query term.

The relative score of documents remains unaffected by changing the base.

3.7.3 Euclidean distance and cosine

One measure of the similarity of two vectors is the Euclidean distance between them:

‖~x− ~y‖ =

√√√√ M∑
i=1

(xi − yi)2

Given a query q and documents d1, d2, ..., we may rank the documents di in order of in-
creasing Euclidean distance from q. Show that if q and the di are all normalized to unit vectors,
then the rank ordering produced by Euclidean distance is identical to that produced by cosine
similarities.

∑
(qi − wi)2 =

∑
q2i − 2

∑
qiwi +

∑
w2
i

= 2(1−
∑

qiwi)

Thus :

∑
(qi − vi)2 <

∑
(qi − wi)2 ⇔ 2(1−

∑
qivi) < 2(1−

∑
qiwi)⇔

∑
qivi >

∑
qiwi
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3.7.4 Vector space similarity

Compute the vector space similarity between :

1. the query: "digital cameras" and
2. the document: "digital cameras and video cameras"

by filling out the empty columns in the table below. Assume N = 10’000’000 logarithmic term
weighting (wf columns) for query and document, idf weighting for the query only and cosine
normalization for the document only.

Treat and as stop word. Enter term counts in the tf column. dfdigital = 10’000, dfvideo =
100’000 and dfcameras = 50’000.

What is the final similarity score ?

Solution

Caution: the above data doesn’t ask for query cosine normalisation !

3.7.5 Request and document similarities

Compute the similarity between the request SQL tutorial and the document SQL tutorial and
database tutorial.

For the term weights in the request, only the logarithmic term weighting should be used, idf
is ignored.

Pour the term weights in the document, use normalized logarithmic frequency (cosinus nor-
malization on logarithmic term weighting), again no idf.

The term and is a stop word.

Request Document
terms tf qi = wf tf wf di = norm. wf qi × di
database 0 0 1 1 0.52 0
SQL 1 1 1 1 0.52 0.52
tutorial 1 1 2 1.3 0.68 0.68
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Using the following computations:

For the normlization, one need to compute the norm of the document vector:

||~d|| =
√

12 + 12 + 1.32 =
√

1 + 1 + 1.69 =
√

3.69 = 1.92

Once the qi × di computed, one can compute the similarity score:

Score(q, d) =
∑

qi × di = 0 + 0.52 + 0.68 = 1.2

(One should note there is no normalization peformed on the query terms as it is not asked
by the instructions)

3.7.6 Various questions ...

• Why does one use the logarithm of the term frequencies and not the raw term frequencies
in order to compute the weights of the terms in teh document ?

The logarithm of the frequencies is used to avoid having more frequent terms hav-
ing an overwhelming importance. For instance a term 10 x more frequent is definitely not
10 x more important. The usage of the logaroithm allows to emphasize this additional
importance yet not too much in order not penalize the less frequent terms.

• In order to compute the weight of the terms in the query:

1. Why does one use the IDF on the query terms ?

The IDF enables the system to take into account the rarity of the terms in
the documents. The more a term is rare, the more it will be taken into account in
the query when using the IDF.

2. Is it required to use the IDF if the request contains one single term ?

No it’s absolutely useless. The weight of a single term cannot not be more or
less important to other terms when there is not other term.

• What is precisely the advantage of using the cosinus of the angle between the vectors
instead of the vector products when computing the similarity between the query vector
and the document vector ?

The problem is that we don’t want to take into account the length of the vectors
which has an impact of the distance between vectors. We rather take into account only
the proportion of the terms in the documents and hence comparing the angles between
the vectors is a better solution.
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• In order to compute the similarity between the query vector and the document vector, is it
correct to use the following formula:

Sim(dj , q) =
~dj · ~q
|~dj |

Yes this can be correct as there is no reason to normalize the weights of the terms
in the request when there is one single request.
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4.1 Introduction

• Evaluation is key to building effective (effectiveness = performance) and efficient (effi-
ciency = efficacité) search engines.

• Measurement usually carried out in controlled laboratory
• online testing can however also be done

• Effectiveness, efficiency and cost are related. There is a triangle relation between
them.
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• e.g. if we eant a particular level of effectiveness and efficiency, this will increas the
cost of the system.
• efficiency and cost targets impact effectiveness

4.1.1 Evaluation corpus

Evaluation corpus are test collections consisting of documents, queries and relevance judg-
ments. These collections are assembled by researchers for evaluating search engines.

Let’s just mention that there classic famous such collections :

• CACM : Titles and abstracts from the Communications of the ACM
• AP : Associated Press newswire documents
• GOV2 : Web pages crawled from the websites in the .gov domains.

One technique for building these document collections is Pooling : top k results from the
rankings obtained by different serarch engines are produced in some random order to relevance
judges.

Another solution consists in using query logs. Query logs are used both for tunnings and
evaluation of search engines. The principle of query logs consist in logging the query and the
user clicks.

4.2 Effectiveness Measures

For a specific query on a specific collection, let :

A Be the set of relevant documents
B Be the set of retrieved documents

Relevant Non-Relevant
Retrieved A ∩B Ā ∩B

Not Retrieved A ∩ B̄ Ā ∩ B̄
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4.2.1 Recall

Recall is the proportion of relevant documents that are retrieved. A good recall⇒ we found most
if not all relevant documents.

Recall answers: What fraction of the relevant documents in the collection were returned by
the system ?

Recall =
|A ∩ b|
|A|

4.2.2 Precision

Precision is the proportion of retrieved documents that are relevant. We want as few not-relevant
documents as possible in the results (only the relevant documents).

Precision answers: What fraction of the returned results are relevant to the information need?

Precision =
|A ∩B|
|B|

4.2.3 Trade-off between Recall and Precision

There is a trade-off between recall and precision. The relation between the two measures usually
is like this (this is a good system) :

Precision and Recall are inversed proportionnal⇒ one cannot have them both high.
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4.2.4 Classification errors

We want to be able to compute classification errors. We consider therefor two measures:

4.2.4.1 False positive

A false positive is a non-relevant document retrieved. We use the fallout for this:

Fallout =
|Ā ∩B|
|Ā|

The goal is to have a fallout as little as possible.

4.2.4.2 False negative

A false negative is about a relevant document that is not retrieved. This is simple 1−Recall.

4.2.5 F Measure

The F measure is an effectiveness measure based on recall and precision that is used for eval-
uating classification performance.

4.2.5.1 Harmonic mean

Harmonic mean of recall and precision :

F =
2RP

R+ P

We use the harmonic mean instead of the arithmetic means because the harmonic mean
emphasizes the importance of small values, whereas the arithmetic mean is affected more by
outliers that are unusually large.

4.2.5.2 General Form

The general form of the F Measure is the following :

Fβ =
(β2 + 1)RP

R+ β2P
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4.3 Ranking Effectiveness

We have here two different ranking systems which we want to evaluate. The graphic shows the
10 first results. There were 6 relevant documents in total in the collection.

At each position in the ranked results, we compute precision and recall at that precise step/-
moment.
→ These values are called recall or precision at rank p.

The problem:

At rank position 10, the two rankings system have the same effectiveness as measured by
precision and recall. Recall is 1.0 because all the relevant documents have been retrieved and
precision is 0.6 because both rankings contain 6 relevant documents in the retrieved set of 10
documents.

At higher positions, however, the first ranking system is better, one can look for instance at
position 4.

Hence:

We need a better way to compare the ranking systems than simply precision at rank p.

A large number of techniques have been developed to summarize the effectiveness of rank-
ing systems. The first one is simply to calculate recall/precision values at small number of
predefined rank positions.

4.3.1 Summarizing a ranking

There are three usual ways for summarizing a ranking

1. Calculating recall and precision at fixed rank positions
→ simply look at fixed positions, usually 10 or 20. Example : above at position 4 or 10.
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2. Averaging the precision values from the rank positions where a relevant document was
retrieved. This is called AP - Average Precision or MAP - Mean Average Precision for
multiples queries
→ See section 4.3.2

3. Calculating precision at standard recall levels, from 0.0 to 1.0 (usually requires interpo-
lation)
→ See section 4.3.6

4.3.2 AP - Average precision

A quite popular method is to summarize the ranking by averaging the precision values from the
rank positions where a relevant document was retrieved (i.e. when recall increases).

This way, the more the system returns relevant document at lower ranks, the better the
average precision is:

We take the sum of the precision at each rank where a relevant document is retrieved and
we divide by the number of relevant documents.
For instance, in the example above, we have divided the sum of the precision of the ranks where
a relevant document was retrieved and we divided it by 6 = the number of relevant documents.

4.3.3 MAP - Mean Average Precision

The aim of an averaging technique is to summarize the effectivness of a specific ranking algo-
rithm accross several queries, not only one as we did above.
In order to achieve this, one idea is simply to use the mean of average precision accross several
queries.

This is the MAP for Mean Average Precision :

• summarize rankings from multiple queries by averaging AP - Average Precision



4.3. Ranking Effectiveness 51

• most commonly used measure in research papers
• assumes user is interested in finding many relevant documents for each query
• requires many relevance judgments in text collection

Note: recall precision graphs are also useful summaries.

The goal is still to see how much the system is good at returning the relevant document in the
head of the result list, but accross several queries. The MAP provides a very succint summary
of the effectiveness of the ranking algorithm.

Note: sometimes AP (single query) is called MAP as well.

4.3.4 Recall-Precision graph

However, sometimes too much information is lost in this process. Recall precision graphs, and
the recall-precision tables they are based on, give more detail on the effectiveness of the ranking
algorithm.

This graph below is a Recall-Precision graph for the above example:
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4.3.5 Interpolation

• To average graphs, calculate precision at standard recall levels:

P (R) = max{P ′ : R′ ≥ R ∧ (R′, P ′) ∈ S}

where S is the set of observed (R,P) points
• Defines precision at any recall level as the maximumprecision observed in any recall-

precision point at a higher recall level

• produces a step function
• defines precision at recall 0.0
• At any recall level (x-axis) we take the maximum precision value available at this

level or any higher level.

This interpollation method is consistent with the observation that it produces a function that
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is monotonically decreasing. This means that precision value always goes down (or stays the
same) with increasing recall.
It also defines a precision for recall 0.0 which would not be obvious otherwise.

4.3.6 Average Precison at Standard Recall Levels

Now we know how to interpolate the results, we can average the interpolated values. This
implies plotting the Recall-precision graph by simply joining the average precision points at the
standard recall levels.

The standard precision levels are 0.1, 0.2, 0.3, 0.4, ...

Although this is somewhat inconsistent with the interpolation method, the intermediate recall
levels are never used in evaluation.

When graphs are averaged over many queries, they tend to become smoother:
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How to compare 2 systems ? : the curve closest to the upper right corner of the graph is the
best performance.

4.4 Focusing on top documents

• Users tend to look at only the top part of the ranked result list to find relevant documents
• Some search tasks have only one relevant documents, e.g. navigational search, question

answering
• Recall not appropriate → instead need to measure how well the search engine does at

retrieving relevant documents at very high ranks

Precison at rank R:

• R typically 5, 10, 20
• easy to compute, average, understan
• not sensitive to rank positions less than R

R-Precision is the precison at the R-th position in the ranking of results for a query that
has R relevant documents.

4.5 Practice

4.5.1 Precision and Recall

An IR system returns 8 relevant documents and 10 non-relevant documents. There are a total
of 20 relevant documents in the collection. What is the precision of the system on this search,
and what is its recall ?
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A = |relevant documents| = 20

B = |retrieved documents| = 18

Recall =
|A ∩B|
|A|

=
8

20
= 0.4

Precision =
|A ∩B|
|B|

=
8

18
= 0.45

4.5.2 Search systems comparison

Consider an information need for which there are 4 relevant documents in the collection. Con-
trast two systems run on this collection. Their top 10 results are judged for relevance as follows
(the leftmost item is the top ranked search result):

System 1 RNRNN NNNRR
System 2 NRNNR RRNNN

4.5.2.1 MAP

What is the MAP of each system ? Which has a higher MAP ?

System 1 R N R N N N N N R R
→ Recall 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.75 1
→ Precision 1 0.5 0.67 0.5 0.4 0.33 0.29 0.25 0.33 0.4
System 2 N R N N R R R N N N
→ Recall 0 0.25 0.25 0.25 0.5 0.75 1 1 1 1
→ Precision 0 0.5 0.33 0.25 0.4 0.5 0.57 0.5 0.44 0.4

AP1 =
1 + 0.67 + 0.33 + 0.4

4
= 0.6

AP2 =
0.5 + 0.4 + 0.5 + 0.57

4
= 0.49

So system 1 has a higher MAP.
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4.5.2.2 MAP analysis

Does this intuitively make sense ? What does it say about what is important in getting a good
MAP score ?

This does actually make sens as it is more important for the MAP (and for a good search
engine) to have the relevant results reported as early as possible. Having the first result a
relevant one is very important.

4.5.2.3 R-Precision

What is the R-precision of each system ? (Does it rank the systems such as the MAP?)

There are 4 relevant document⇒ R = 4

R1 =
2

4
= 0.5

R2 =
1

4
= 0.25

So the tendancy is pretty much the same than with the MAP.

4.5.3 Search system analysis

The following list of R’s and N’s represents relevant (R) and non-relevant (N) documents returned
in a ranked list of 20 documents retrieved in response to a query on a collection of 10’000
documents.
The top of the ranked list (the documents the system thinks is most likely to be relevant) is on
the left or the list.
This list shows 6 relevant document. Let’s assume there are 8 relevant documents in total in the
collection.

RRNNN NNNRN RNNNR NNNNR

4.5.3.1 Precision and Recall

(partie 1) R R N N N N N N R N
→ Recall 0.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.38 0.38
→ Precision 1 1 0.67 0.5 0.4 0.33 0.29 0.25 0.33 0.3

(partie 2) R N N N R N N N N R
→ Recall 0.5 0.5 0.5 0.5 0.63 0.63 0.63 0.63 0.63 0.75
→ Precision 0.36 0.33 0.31 0.29 0.33 0.31 0.29 0.28 0.26 0.3
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What is the precision of the system on the top 20 ?

Recall =
|A ∩B|
|A|

=
6

8
= 0.75

Precision =
|A ∩B|
|B|

=
6

20
= 0.3

4.5.3.2 What is the F1 on the top 20 ?

The F1 is the F Measure for β = 1

Fβ =
(β2 + 1)RP

R+ β2P

F1 =
2RP

R+ P
=

2× 0.75× 0.3

0.75 + 0.3
=

0.45

1.05
= 0.43

4.5.3.3 Uninterpolated precision

What is the uninterpolated precision of the system at 25% recall ?

25% recall means 2 relevant documents out on 8. Here at 0.25 recall we have several
values for the precision (from 1.0 at rank 2 to 0.25 at rank 8), we take the highest one which is
necessarily the precision right at the moment the 25% recall has been reached

The answer is : 1.0.

4.5.3.4 Interpolated precision

What is the interpolated precision of the system at 33% recall ?

33% recall means 2.64 relevant documents out on 8.

Interpolated⇒ we take the maximum one from the precision values of the recall points above
0.33.

Looking on the array above, the highest precision we find for a recall above 0.33 is at rank
11 where the precision is 0.36 for a recall of 0.5.

The answer is : 0.36.
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4.5.3.5 MAP

Assume that these 20 documents are the complete result set of the system. What is the MAP
for the query ?

AP =
1 + 1 + 0.33 + 0.36 + 0.33 + 0.3

8
= 0.41

Note the division by 8 = total relevant documents in the collection and not 6 = relevant docu-
ments retrieved.

4.5.3.6 Largest MAP

What is the largest possible MAP that this system could have ?

We assume the 20 first results are fixed. The largest possible MAP occurs when the 2
remaiming relevant documents appear at the earliest ranks, that is 21 and 22. In this case:

AP =
1 + 1 + 0.33 + 0.36 + 0.33 + 0.3 + 7

21 + 8
22

8
= 0.50

4.5.3.7 Smallest MAP

What is the smallest possible MAP that this system could have ?

We assume the 20 first results are fixed. The smallest possible MAP occurs when the 2
remaiming relevant documents appear at the latest ranks, that is 19’999 and 20’000. In this
case:

AP =
1 + 1 + 0.33 + 0.36 + 0.33 + 0.3 + 7

19′999 + 8
20′000

8
= 0.41

4.5.4 Search systems comparison (another example)

One wants to compare the performance of two search systems A and B on a specific request
R. The results of the search engines sorted by relevance are given below (R is a relevant result
while N is a non-relevant result):

System A RRRRN NNRNN
System B RRNNR NNNRR

We know there is a total of 10 relevant documents in the collection. One should not that both
systems have returned only 5 relevant documents.
However one of them is deemed as more performant than the other.
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• According to you, which is the most performant one ?
• Then, justify your answer using an appropriate metric.

The first system is more efficient as it favorise relevant documents at the beginning of the
result list.

System A R R R R N N N R N N
→ Recall 0.1 0.2 0.3 0.4 0.4 0.4 0.4 0.5 0.5 5
→ Precision 1 1 1 1 0.8 0.67 0.58 0.63 0.55 0.5
System B R R N N R N N N R R
→ Recall 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4
→ Precision 1 1 0.67 0.5 0.6 0.5 0.43 0.38 0.44 0.5

One can compute for instance R and P and rank 5:

R1−r5 = 0.4

P1−r5 = 0.8

R2−r5 = 0.3

P2−r5 = 0.6

Or perhaps the (Mean) Average Precision:

AP1 =
1 + 1 + 1 + 1 + 0.63

10
= 0.46

AP2 =
1 + 1 + 0.6 + 0.44 + 0.5

10
= 0.35

Both these results confirm our instinctive approach.

4.5.5 F-measure

The F-measure is defined as the hamonic mean between the Recall and Precision. What is the
advantage of using the harmonic mean instead of the arithmetic mean:

We use the harmonic mean instead of the arithmetic means because the harmonic mean
emphasizes the importance of small values, whereas the arithmetic mean is affected more by
outliers that are unusually large.
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5.1 Introduction

5.1.1 Information Needs

• An information needis the underlying cause of the query that a person submits to a search
engine.
→ sometimes called information problem to emphasize that information need is generally
related to a task
• Categorized using variety of dimensions

• e.g., number of relevant documents being sought
• type of information that is needed
• type of task that led to the requirement for information
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5.1.2 Queries and Information Needs

• A query can represent very different information needs

• May require different search techniques and ranking algorithms to produce the best
rankings

• A query can be a poor representation of the information need

• User may find it difficult to express the information need
• User is encouraged to enter short queries both by the search engine interface, and

by the fact that long queries don’t work

5.1.3 Interaction

• Interaction with the system occurs

• during query formulation and reformulation
• while browsing the result

• Key aspect of effective retrieval

• users can’t change ranking algorithm but can change results through interaction
• helps refine description of information need

5.1.4 ASK Hypothesis

• Belkin et al (1982) proposed a model called Anomalous State of Knowledge
• ASK hypothesis:

• difficult for people to define exactly what their information need is, because that
information is a gap in their knowledge
• Search engine should look for information that fills those gaps

5.2 Query-based Stemming

• Make decision about stemming at query time rather than during indexing.
→ improved flexibility, effectiveness
• Query is expanded using word variants

• documents are not stemmed
• e.g., “rock climbing” expanded with “climb”, not stemmed to “climb”

5.2.1 Stem Classes

We need a way to generate the stem. We define for this stem classes built using, for instance,
the porter algorithm. A stem class is the group of words that will be transformed into the same
stem by the stemming algorithm.
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As one can see there is a problem in the example above as policy and police should not
necessarily be grouped together.

• Stem classes are often too big and inaccurate
• Modify using analysis of word co-occurrence
• Assumption: Word variants that could substitute for each other should co-occur often in

documents.

5.3 Spell checking

• Spell checking Important part of query processing
• 10-15% of all web queries have spelling errors
• Errors include typical word processing errors but also many other types, typo, syntax, etc.

5.3.1 Basic Approach

The idea consist in suggesting corrections for words not found in spelling dictionary.

• Suggestions found by comparing word to words in dictionary using similarity measure
• Most common similarity measure is edit distance : the number of operations required to

transform one word into the other

5.3.1.1 Edit Distance

Most commonly, the Damerau-Levenshtein distance is used: counts the minimum number of
insertions, deletions, substitutions, or transpositions of single characters required.
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• Ex. for distance = 1:
extenssions→ extensions / (insertion error)
pointter→ pointer / (deletion error)
painter→ pointer / (substitution error)
poniter→ pointer / (transposition error)
• Ex. for distance = 2:

doceration→ decoration

There are a number of techniques used to speed up calculation of edit distances:

• restrict to words starting with same character
• restrict to words of same or similar length
• restrict to words that sound the same

The last option uses a phonetic code such as the Soundex (see lecture).

5.3.2 Noisy channel model

The noisy channel model is based on Shannon’s theory of communication. I won’t cover it here
in this resume.

5.4 Relevance feedback

• consists in getting user feedback on relevance of documents in the initial set of results:

1. User issues a (short, simple) query
2. The user marks from results as relevant or non-relevant
3. The system computes a better representation of the information need based on

this feedback
4. Relevance feedback can go through one or more iterations

• Idea : it may be difficult to formulate a good query when you don’t know the collection well,
so iterate→ make the system learn.

5.4.1 Query reformulation

• Revise query to account for feedback:

1. Query expansion : Add new terms to query from relevant documents.
2. Term reweighting : Increase weight of terms in relevant documents and decrease

weight of terms in irrelevant documents.

5.4.1.1 Query reformulation in Vector model

• Change query vector using vector algebra
• Add the vectors fir the relevant document to the query vector
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• Substract the vectors for the irrelevant docs from the query vector
• This adds both positively and negatively weighted terms to the query as well as reweight-

ing the initial query terms.

5.4.2 Optimal query

Assume that the relevant set of documents Cr is known. Then the best query that ranks all and
only the relevant documents at the top is:

~qopt =
1

|Cr|
∑
∀dj∈Cr

~dj︸ ︷︷ ︸
− 1

N − |Cr|
∑
∀dj /∈Cr

~dj︸ ︷︷ ︸
A B

where:

Cr is the set of relevant documents in the collection.
N is the total number of documents
N − |Cr| is the number of irrelevant documents
A is the centroid of the cluster of the relevant documents
B is the centroid of the cluster of the irrelevant documents

5.4.3 Standard Rocchio Method

Since all the set of all relevant documents is unknown in practice, we need to find a slightly
different formula a search engine could use.
The idea is to use instead the set of known relevant documents (Dr) and the set of known
irrelevant documents (Dn) and include the initial query q in the formula:

~qm = α~q +
β

|Dr|
∑
∀dj∈Dr

~dj −
γ

|Dn|
∑
∀dj∈Dn

~dj

where:

α is the tunable weight for initial query
β is the tunable weight for relevant documents
γ is the tunable weight for irrelevant documents

Usuall, one chooses a β greater that the γ value in order to give a higher weight to the
relevant documents.

The resulting negative weights are set to 0.
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5.5 practice

5.5.1 Relevance feedback

Let’s assume an initial request of a user such as:

"cheap CDs cheap DVDs extremely cheap CDs"

Then the user examines 2 documents D1 and D2:

• D1 : CDs cheap software cheap CDs
• D2 : cheap thrill DVDs

which the user judges as D1 is relevant and D2 is irrelevant.

• Use direct term frequencies, no scaling, no idf, no normalization.
• Use Rocchio’s relevance
• Assume α = 1, β = 0.75, γ = 0.25

• What would be the revised query vector after relevance feedback ?

Computing vectors:

Query D1 D2 ~qm
init. α~q init. β ~D1 init. γ ~D2

CD 2 2 2 1.5 0 0 2 + 1.5 - 0 = 3.5
cheap 3 3 2 1.5 1 0.25 3 + 1.5 - 0.25 = 4.25
DVD 1 1 0 0 1 0.25 1 + 0 - 0.25 = 0.75
extremely 1 1 0 0 0 0 1 + 0 - 0 = 1
software 0 0 1 0.75 0 0 0 + 0.75 - 0 = 0.75
thrils 0 0 0 0 1 0.25 0 - 0 - 0.25 = 0→ 0
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