
1All rights reserved. 2012 (c) ZeroTurnaround OÜ

MASTERING
JAVA BYTECODE
AT THE CORE OF THE JVM
BY ANTON ARHIPOV, JREBEL PRODUCT LEAD

take a byte out
 of this code...

2All rights reserved. 2012 (c) ZeroTurnaround OÜ

INRODUCTION
WHAT YOU SHOULD KNOW
Whether you are a Java developer or architect, CxO or simply the
user of a modern smart phone, Java bytecode is in your face, quietly
supporting the foundation of the Java Virtual Machine (JVM).

1All rights reserved. 2012 (c) ZeroTurnaround OÜ

Directors, executives and non-technical folks can take a breather here:
All they need to know is that while their development teams are building
and preparing to deploy the next amazing version of their software, Java
bytecode is silently pumping through the JVM platform.

Put simply, Java bytecode is the intermediate representation of Java code
(i.e. class files) and it is executed inside the JVM - so why should you care
about it? Well, because you cannot run your entire development ecosystem
without Java bytecode telling it all what to do, especially how to treat and
define the code that Java developers are writing.

From a technical POV, Java bytecode is the code set used by the Java
Virtual Machine that is JIT-compiled into native code at runtime. Without
Java bytecode behind the scenes, the JVM would not be able to compile and
mirror the non-bytecode Java code developers write to add new features,
fix bugs and produce beautiful apps.

Many IT professionals might not have had the time to goof around with
assembler or machine code, so Java bytecode can seem like an obscure
piece of low-level magic. But, as you know, sometimes things go really
wrong and understanding what is happening at the very foundation of the
JVM may be what stands between you and solving the problem at hand.

In this RebelLabs report you will learn how to read and write JVM bytecode
directly, so as to better understand how the runtime works, and be able to
disassemble key libraries that you depend on.

In addition to getting the skinny on Java bytecode, we interviewed bytecode
specialists Cédric Champeau and Jochen Theodorou working on the
Groovy [1] ecosystem at SpringSource, and tech lead Andrey Breslav
working on Kotlin [2] , a newcomer to the JVM language party, from
JetBrains.

We will cover the following topics:

• How to obtain the bytecode listings
• How to read the bytecode
• How the language constructs are mirrored by the compiler:
 local variables, method calls, conditional logic
• Introduction to ASM
• How bytecode works in other JVM languages like Groovy and Kotlin

So, get ready for your journey to the center of the JVM, and don’t
forget your compiler ;-)

[1] : Groovy programming language http://groovy.codehaus.org
[2] : Kotlin programming language http://kotlin.jetbrains.org

http://twitter.com/cedricchampeau
http://blackdragsview.blogspot.cz/
http://groovy.codehaus.org
http://twitter.com/abreslav
http://kotlin.jetbrains.org
http://groovy.codehaus.org
http://kotlin.jetbrains.org

2All rights reserved. 2012 (c) ZeroTurnaround OÜ

PART I
GENTLE INTRODUCTION TO JAVA BYTECODE
Java bytecode is the form of instructions that the JVM executes. A Java programmer,
normally, does not need to be aware of how Java bytecode works. However,
understanding the low-level details of the platform is what makes you a better
programmer after all (and we all want that, right?)

Understanding bytecode and what bytecode is likely to be generated by a Java
compiler helps Java programmers in the same way that knowledge of assembly
helps the C or C++ programmer [3] .

Understanding the bytecode, however, is essential to the areas of tooling and
program analysis, where the applications can modify the bytecode to adjust the
behavior according to the application's domain. Profilers, mocking frameworks,
AOP - to create these tools, developers must understand Java bytecode thoroughly.

[3] : Understanding bytecode makes you a better programmer
 http://www.ibm.com/developerworks/ibm/library/it-haggar_bytecode

http://www.ibm.com/developerworks/ibm/library/it-haggar_bytecode
http://www.ibm.com/developerworks/ibm/library/it-haggar_bytecode
http://www.ibm.com/developerworks/ibm/library/it-haggar_bytecode

3All rights reserved. 2012 (c) ZeroTurnaround OÜ

Lets start with a very basic example in order to understand how Java
bytecode is executed. Consider a trivial expression, 1 + 2, which can be
written down in reverse Polish notation as 1 2 +. Why is the reverse Polish
notation any good here? It is easy to evaluate such expression by using a
stack:

The result, 3, is on the top of the stack after the 'add' instruction
executes.

The model of computation of Java bytecode is that of a stack-oriented
programming language. The example above is expressed with Java
bytecode instructions is identical, and the only difference is that the
opcodes have some specific semantics attached:

The opcodes iconst_1 and iconst_2 put constants 1 and 2 to the stack.
The instruction iadd performs addition operation on the two integers
and leaves the result on the top of the stack.

DOWN TO THE BASICS

push 1

push 1
iconst_1

iconst_2

1

1

1

1
3

3

2

2

push 2

push 2

add

iadd

4All rights reserved. 2012 (c) ZeroTurnaround OÜ

As the name implies, Java bytecode consists of one-byte instructions, hence there are 256
possible opcodes. There are a little less real instructions than the set permits - approximately
200 opcodes are utilized, where some of the opcodes are reserved for debugger operation.

Instructions are composed from a type prefix and the operation name. For instance, ‘i’ prefix
stands for ‘integer’ and therefore the iadd instruction indicates that the addition operation is
performed for integers.

Depending on the nature of the instructions, we can group these into several broader
groups:

1) Stack manipulation instructions, including interaction with
local variables.

2) Control flow instructions
3) Object manipulation, incl. methods invocation
4) Arithmetics and type conversion

There are also a number of instructions of more specialized tasks such as synchronization
and exception throwing.

GENERAL FACTS ABOUT JAVA BYTECODE

5All rights reserved. 2012 (c) ZeroTurnaround OÜ

javap
To obtain the instruction listings of a compiled class file, we can apply the javap utility,
the standard Java class file disassembler distributed with the JDK.

We will start with a class that will serve as an entry point for our example application, the moving average calculator.

public class Main {

 public static void main(String[] args){

 MovingAverage app = new MovingAverage();

 }

}

After the class file is compiled, to obtain the bytecode listing for the example above one needs to execute the following command: javap -c Main

The result is as follows:

Compiled from "Main.java"

public class algo.Main {

 public algo.Main();

	 Code:

 	 0: aload_0

 	 1: invokespecial #1 	 // Method java/lang/Object."<init>":()V

 	 4: return

 public static void main(java.lang.String[]);

	 Code:

 	 0: new #2 	 // class algo/MovingAverage

 	 3: dup

 	 4: invokespecial #3 	 // Method algo/MovingAverage."<init>":()V

 	 7: astore_1

 	 8: return

}

6All rights reserved. 2012 (c) ZeroTurnaround OÜ

As you can see there is a default constructor and a main method. You probably always knew that if you don’t
specify any constructor for a class there’s still a default one, but maybe you didn’t realize where it actually is.
Well, here it is! We just proved that the default constructor actually exists in the compiled class, so it is java
compiler who generates it.

The body of the constructor should be empty but there are a few instructions generated still. Why is that?
Every constructor makes a call to super(), right? It doesn’t happen automagically, and this is why some
bytecode instructions are generated into the default constructor. Basically, this is the super() call;

The main method creates an instance of MovingAverage class and returns. We will review the class
instantiation code in chapter 6.

You might have noticed that some of the instructions are referring to some numbered parameters with
#1, #2, #3. This are the references to the pool of constants. How can we find out what the constants are
and how can we see the constant pool in the listing? We can apply the -verbose argument to javap when
disassembling the class:

$ javap -c -verbose HelloWorld

7All rights reserved. 2012 (c) ZeroTurnaround OÜ

Here’s some interesting parts that it prints:

Classfile /Users/anton/work-src/demox/out/production/demox/algo/Main.class

 Last modified Nov 20, 2012; size 446 bytes

 MD5 checksum ae15693cf1a16a702075e468b8aaba74

 Compiled from "Main.java"

public class algo.Main

 SourceFile: "Main.java"

 minor version: 0

 major version: 51

 flags: ACC_PUBLIC, ACC_SUPER

Constant pool:

 #1 = Methodref #5.#21 // java/lang/Object."<init>":()V

 #2 = Class #22 // algo/MovingAverage

 #3 = Methodref #2.#21 // algo/MovingAverage."<init>":()V

 #4 = Class #23 // algo/Main

 #5 = Class #24 // java/lang/Object

Theres a bunch of technical information about the class file: when it was compiled, the MD5 checksum,
which *.java file it was compiled from, which Java version it conforms to, etc.

8All rights reserved. 2012 (c) ZeroTurnaround OÜ

We can also see the accessor flags there: ACC_PUBLIC and ACC_SUPER. The ACC_PUBLIC flag is kind of
intuitive to understand: our class is public hence there is the accessor flag saying that it is public. But was is
ACC_SUPER for? ACC_SUPER was introduced to correct a problem with the invocation of super methods with
the invokespecial instruction. You can think of it as a bugfix to the Java 1.0 so that it could discover super
class methods correctly. Starting from Java 1.1 the compiler always generates ACC_SUPER accessor flag to
bytecode.

You can also find the denoted constant definitions in the constant pool:

 #1 = Methodref #5.#21 //java/lang/Object."<init>":()V

The constant definitions are composable, meaning the constant might be composed from other constants
referenced from the same table.

There are a few other things that reveal itself when using -verbose argument with javap. For instance there’s
more information printed about the methods:

 public static void main(java.lang.String[]);
 flags: ACC_PUBLIC, ACC_STATIC

 Code:

 stack=2, locals=2, args_size=1

The accessor flags are also generated for methods, but we can also see how deep a stack is required for
execution of the method, how many parameters it takes in, and how many local variable slots need to be
reserved in the local variables table.

9All rights reserved. 2012 (c) ZeroTurnaround OÜ

The JVM as a stack machine
To understand the details of the bytecode, we need to have an idea of
the model of execution of the bytecode. A JVM is a stack-based machine.
Each thread has a JVM stack which stores frames. Every time a method is
invoked a frame is created. A frame consists of an operand stack, an array
of local variables, and a reference to the runtime constant pool of the class
of the current method. We have seen all this in our initial example, the
disassembled Main class.

The array of local variables, also called the local variable table, contains the
parameters of the method and is also used to hold the values of the local
variables. The size of the array of local variables is determined at compile
time and is dependent on the number and size of local variables and
formal method parameters.

The operand stack is a LIFO stack used to push and pop values. Its size is
also determined at compile time. Certain opcode instructions push values
onto the operand stack; others take operands from the stack, manipulate
them, and push the result. The operand stack is also used to receive return
values from methods.

In the debugger, we can drop frames one by one, however the state of the
fields will not be rolled back.

Local variables

0 1 ... N

Operand
 Stack

Constant
pool

10All rights reserved. 2012 (c) ZeroTurnaround OÜ

What’s in the method body?
When looking at the bytecode listing from the HelloWorld example you might start to wonder, what are
those numbers in front of every iinstruction? And why are the intervals between the numbers not equal?
 	 0: new #2 // class algo/MovingAverage

 	 3: dup

 	 4: invokespecial #3 // Method algo/MovingAverage."<init>":()V

 	 7: astore_1

 	 8: return

The reason: Some of the opcodes have parameters that take up space in the bytecode array. For instance,
new occupies three slots in the array to operate: one for itself and two for the input parameters. Therefore,
the next instruction - dup - is located at the index 3.

Here's what it looks like if we visualize the method body as an array:

Every instruction has its own HEX representation and if we use that we'll get the HEX string that represents
the method body:

new

0 1 2 3 4 5 6 7 8

00 0002 03 astore_1 returndup invoke special

ff

0 1 2 3 4 5 6 7 8

00 0002 03 4c f159 f7

11All rights reserved. 2012 (c) ZeroTurnaround OÜ

By opening the class file in HEX editor we can find this string:

It is even possible to change the bytecode via HEX editor even though it is a bit fragile to
do so. Besides there are some better ways of doing this, like using bytecode manipulation
tools such as ASM or Javassist.

Not much to do with this knowledge at the moment, but now you know where these
numbers come from.

What’s in the method body?
There are a number of instructions that manipulate the stack in one way or another. We have already mentioned some basic instructions that work
with the stack: push values to the stack or take values from the stack. But there's more; the swap instruction can swap two values on the top of the
stack.

Here are some example instructions that juggle the values around the stack. Some basic instructions first: dup and pop. The dup instruction
duplicates the value on top of the stack. The pop instruction removes the top value from the stack.

There are some more complex instructions: swap, dup_x1 and dup2_x1, for instance. The swap instruction, as the name implies, swaps two
values on the top of the stack, e.g. A and B exchange positions (see example 4); dup_x1 inserts a copy of the top value into the stack two values
from the top (see example 5); dup2_x1 duplicates two top values and inserts beneath the third (example 6).

12All rights reserved. 2012 (c) ZeroTurnaround OÜ

Examples:
1)

4) 5) 6)

2) 3)
dup

pop

swap

dup_x1

dup2_x1

dup

pop

swap

dup_x1

dup2_x1

dup

pop

swap

dup_x1

dup2_x1

dup

pop

swap

dup_x1

dup2_x1

dup2_x2

pop2

dup2_x2

pop2

dup2_x2

pop2

dup

pop

swap

dup_x1

dup2_x1

dup

pop

swap

dup_x1

dup2_x1

The dup_x1 and dup2_x1 instructions seem to be a bit esoteric - why
would anyone need to apply such behavior - duplicating top values
under the existing values in the stack? Here’s a more practical example:
how to swap 2 values of double type? The caveat is that double takes
two slots in the stack, which means that if we have two double values
on the stack they occupy four slots. To swap the two double values

we would like to use the swap instruction but the problem is that it
works only with one-word instructions, meaning it will not work with
doubles, and swap2 instruction does not exist. The workaround is then
to use dup2_x2 instruction to duplicate the top double value below
the bottom one, and then we can pop the top value using the pop2
instruction. As a result, the two doubles will be swapped.

B A
B

B
A A A

B B B

B
B

A A
B

A

A

1.0 1.0 2.0
2.0 2.0 1.0

1.0

13All rights reserved. 2012 (c) ZeroTurnaround OÜ

Local variables
While the stack is used for execution, local variables are used to save the
intermediate results and are in direct interaction with the stack.

Let's now add some more code into our initial example:

public static void main(String[] args) {

 MovingAverage ma = new MovingAverage();

 int num1 = 1;

 int num2 = 2;

 ma.submit(num1);

 ma.submit(num2);

 double avg = ma.getAvg();

}

Have you tasted
 JRebel yet?

Shameless Advertisement -
we had too much white space here.

http://0t.ee/Uiyxr6

14All rights reserved. 2012 (c) ZeroTurnaround OÜ

 Code:
 	 0: new #2 // class algo/MovingAverage

 	 3: dup

 	 4: invokespecial #3 // Method algo/MovingAverage."<init>":()V

 	 7: astore_1

 	 8: iconst_1

 	 9: istore_2

 	 10: iconst_2

 	 11: istore_3

 	 12: aload_1

 	 13: iload_2

 	 14: i2d

 	 15: invokevirtual #4 // Method algo/MovingAverage.submit:(D)V

 	 18: aload_1

 	 19: iload_3

 	 20: i2d

 	 21: invokevirtual #4 // Method algo/MovingAverage.submit:(D)V

 	 24: aload_1

 	 25: invokevirtual #5 // Method algo/MovingAverage.getAvg:()D

 	 28: dstore 	4

	 LocalVariableTable:

 	 Start Length Slot Name Signature

 	 0 	 31 	 0 args [Ljava/lang/String;

 	 8 	 23 	 1 ma Lalgo/MovingAverage;

 	 10 	 21 	 2 num1 I

 	 12 	 19 	 3 num2 I

 	 30 	 1 	 4 avg D

We submit two numbers to the MovingAverage class and ask it to calculate the average of the current
values. The bytecode obtained from this code is as follows:

15All rights reserved. 2012 (c) ZeroTurnaround OÜ

After creating the local variable of type MovingAverage the code stores
the value in a local variable ma, with the astore_1 instruction: 1 is the slot
number of ma in the LocalVariableTable.

Next, instructions iconst_1 and iconst_2 are used to load constants 1
and 2 to the stack and store them in LocalVariableTable slots 2 and 3
respectively by the instructions istore_2 and istore_3.

Note that the invocation of store-like instruction actually removes the
value from the top of the stack. This is why in order to use the variable
value again we have to load it back to the stack. For instance, in the listing
above, before calling the submit method, we have to load the value of the
parameter to the stack again:

12: aload_1

13: iload_2

14: i2d

15: invokevirtual #4 // Method algo/MovingAverage.submit:(D)V

After calling the getAvg() method the result of the execution locates on
the top of the stack and to store it to the local variable again the dstore
instruction is used since the target variable is of type double.

24: aload_1

25: invokevirtual #5 // Method algo/MovingAverage.getAvg:()D

28: dstore 4

One more interesting thing to notice about the LocalVariableTable is
that the first slot is occupied with the parameter(s) of the method. In
our current example it is the static method and there's no this reference
assigned to the slot 0 in the table. However, for the non-static methods this
will be assigned to slot 0.

The takeaway from this part is that whenever you want to assign
something to a local variable, it means you want to store it by using a
respective instruction, e.g. astore_1. The store instruction will always
remove the value from the top of the stack. The corresponding load
instruction will push the value from the local variables table to the stack,
however the value is not removed from the local variable.

LOCAL
VARIABLE

LOAD

STORE

STACK

16All rights reserved. 2012 (c) ZeroTurnaround OÜ

Flow control
The flow control instructions are used to organize the flow of the execution depending on the conditions. If-Then-Else, ternary operator,
various kinds of loops and even exception handling opcodes belong to the control flow group of Java bytecode. This is all about jumps and
gotos now :)

We will now change our example so that it will handle an arbitrary number of numbers that can be submitted to the MovingAverage class:

MovingAverage ma = new MovingAverage();

for (int number : numbers) {

 ma.submit(number);

}

0: new #2 // class algo/MovingAverage

3: dup

4: invokespecial #3 // Method algo/MovingAverage."<init>":()V

7: astore_1

8: getstatic #4 // Field numbers:[I

11: astore_2

12: aload_2

13: arraylength

14: istore_3

15: iconst_0

16: istore 4

18: iload 4

20: iload_3

21: if_icmpge 43

24: aload_2

25: iload 4

27: iaload

28: istore 5

30: aload_1

31: iload 5

 33: i2d

 34: invokevirtual #5 // Method algo/MovingAverage.submit:(D)V

 37: iinc 	 4, 1

 40: goto 	 18

 43: return

	 LocalVariableTable:

 	 Start Length Slot Name Signature

 30 7 	 5 number I

 12 31 	 2 arr$ [I

 15 28 	 3 len$ I

 18 25 	 4 i$ I

 0 49 	 0 args [Ljava/lang/String;

 8 41 	 1 ma Lalgo/MovingAverage;

 48 	1 	 2 avg D

Assume that the numbers variable is a static field in the same class. The bytecode that corresponds to the
loop that iterates over the numbers is as follows

17All rights reserved. 2012 (c) ZeroTurnaround OÜ

The instructions at positions 8 through 16 are used to organize the loop control. You can see that
there are three variables in the LocalVariableTable that aren't really mentioned in the source code:
arr$, len$, i$ - those are the loop variables. The variable arr$ stores the reference value of the
numbers field from which the length of the loop, len$, is derived using the arraylength instruction.
Loop counter, i$ is incremented after each iteration using iinc instruction.

The first instructions of the loop body are used to perform the comparison of the loop counter to
the array length:

18: iload 4

20: iload_3

21: if_icmpge 43

We load the values of i$ and len$ to the stack and call the if_icmpge to compare the values. The if_
icmpge instruction meaning is that if the one value is greater or equal than the other value, in our
case if i$ is greater or equal than len$, then the execution should proceed from the statement that
is marked with 43. If the condition does not hold, then the loop proceeds with the next iteration.

At the end of the loop it loop counter is incremented by 1 and the loop jumps back to the
beginning to validate the loop condition again:

37: iinc 4, 1 // increment i$

40: goto 	18 // jump back to the beginning of the loop

18All rights reserved. 2012 (c) ZeroTurnaround OÜ

Arithmetics & Conversion
As you have seen already, there's a number of instructions that perform all
kind of arithmetics in Java bytecode. In fact, a large portion of the instruction
set is denoted to the arithmetic. There are instructions of addition,
subtraction, multiplication, division, negation for all kind of types - integers,
longs, doubles, floats. Plus there's a lot of instructions that are used to
convert between the types.

Arithmetical opcodes and types

int

long

float

double dadd dsub dmul ddiv drem dneg

iadd

ladd

fadd

isub

lsub

fsub

imul

lmul

fmul

idiv

ldiv

fdiv

irem

lrem

frem

ineg

lneg

fneg

add
+

sub
-

mult.
*

divide
/

remainder
%

negate
-()

19All rights reserved. 2012 (c) ZeroTurnaround OÜ

Type conversion happens for instance when we want to assign an integer value to a variable which type is long.

Type conversion opcodes

In our example where an integer value is passed as a parameter to submit() method which actually takes double,
we can see that before actually calling the method the type conversion opcode is applied:

 31: iload 	 5

 33: i2d

 34: invokevirtual #5 // Method algo/MovingAverage.submit:(D)V

It means we load a value of a local variable to the stack as an integer, and then apply i2d instruction to convert it
into double in order to be able to pass it as a parameter.

The only instruction that doesn't require the value on the stack is the increment instruction, iinc, which operates on
the value sitting in LocalVariableTable directly. All other operations are performed using the stack.

int

long

float

double

-

l2i

f2i

d2i

i2l

-

f2l

d2l

i2f

l2f

-

d2f

i2d

l2d

f2d

-

i2b

-

-

-

i2c

-

-

-

i2s

-

-

-

int long float double byte char short

Fr
om

To

20All rights reserved. 2012 (c) ZeroTurnaround OÜ

new, <init> & <clinit>
There's a keyword new in Java but there's also a bytecode instruction called new.
When we created an instance of MovingAverage class:

 MovingAverage ma = new MovingAverage();

 the compiler generated a sequence of opcodes that you can recognize as a
pattern:

0: new #2 // class algo/MovingAverage

3: dup

4: invokespecial #3 // Method algo/MovingAverage."<init>":()V

When you see new, dup and invokespecial instructions together it must
ring a bell - this is the class instance creation!

Why three instructions instead of one, you ask? The new instruction creates the
object but it doesn't call the constructor, for that, the invokespecial instruction
is called: it invokes the mysterious method called <init>, which is actually the
constructor. The dup instruction is used to duplicate the value on the top of
the stack. As the constructor call doesn't return a value, after calling the <init>
method on the object the object will be initialized but the stack will be empty so
we wouldn't be able to do anything with the object after it was initialized. This is
why we need to duplicate the reference in advance so that after the constructor
returns we can assign the object instance into a local variable or a field. Hence,
the next instruction is usually one of the following:

astore {N} or astore_{N} - to assign to a local variable, where {N} is the
position of the variable in local variables table.
putfield - to assign the value to an instance field
putstatic - to assign the value to a static field

While a call to <init> is a constructor invocation, there's another similar
method, <clinit> which is invoked even earlier. This is the static initializer
name of the class. The static initializer of the class isn't called directly, but
triggered by one of the following instructions: new, getstatic, putstatic or
invokestatic. That said, if you create a new instance of the class, access a
static field or call a static method, the static initializer is triggered.

In fact, there is even more options to trigger the static initializer as described
in the Chapter 5.5 of JVM specification [4]

[4] : JVM Specification http://docs.oracle.com/javase/specs/jvms/se7/html

http://docs.oracle.com/javase/specs/jvms/se7/html
http://docs.oracle.com/javase/specs/jvms/se7/html

21All rights reserved. 2012 (c) ZeroTurnaround OÜ

Method invocation and parameter passing
We have touched the method invocation topic slightly in the class
instantiation part: the <init> method was invoked via invokespecial
instruction which resulted in the constructor call. However, there are a few
more instructions that are used for method invocation:

invokestatic, as the name implies, this is a call to a static method of the
class. This is the fastest method invocation instruction there is.

invokespecial instruction is used to call the constructor, as we know.
But it also is used to call private methods of the same class and accessible
methods of the super class.

invokevirtual is used to call public, protected and package private methods
if the target object of a concrete type.

invokeinterface is used when the method to be called belongs to an
interface.

So what is the difference between invokevirtual and invokeinterface?

Indeed a very good question. Why do we need both invokevirtual and
invokeinterface, why not to use invokevirtual for everything? The interface
methods are public methods after all! Well, this is all due to the optimization
for method invocations. First, the method has to be resolved, and then we
can call it. For instance, with invokestatic we know exactly which method
to call: it is static, it belongs to only one class. With invokespecial we have a

limited list of options - it is easier to choose the resolution strategy, meaning
the runtime will find the required method faster.

With invokevirtual and invokeinterface the difference is not that obvious
however. Let me offer a very simplistic explanation of the difference for
these two instructions. Imagine that the class definition contains a table of
method definitions and all the methods are numbered by position. Here's
an example: class A, with methods method1 and method2 and a subclass
B, which derives method1, overrides method2, and declares new method3.
Note that method1 and method2 are at the same indexed position both in
class A and class B.

class A

 1: method1

 2: method2

class B extends A

 1: method1

 2: method2

 3: method3

This means that if the runtime wants to call method2, it will always find it at
position 2. Now, to explain the essential difference between invokevirtual

22All rights reserved. 2012 (c) ZeroTurnaround OÜ

and invokeinterface let's make class B to extend interface X which declares a
new method:

class B extends A implements X

 1: method1

 2: method2

 3: method3

 4: methodX

The new method is at index 4 and it looks like it is not any different from
method3 in this situation. However, what if theres another class, C, which
also implements the interface but does not belong to the same hierarchy as
A and B:

class C implements X

 1: methodC

 2: methodX

The interface method is not at the same position as in class B any more
and this is why runtime is more restricted in respect to invokinterface,
meaning it can do less assumptions in method resolution process than with
invokevirtual.

23All rights reserved. 2012 (c) ZeroTurnaround OÜ

PART II
GETTING STARTED WITH ASM
ObjectWeb ASM is the de-facto standard for Java bytecode analysis and manipulation. ASM exposes
the internal aggregate components of a given Java class through its visitor oriented API. The API
itself is not very broad - with a limited set of classes you can achieve pretty much all you need. ASM
can be used for modifying the binary bytecode, as well as generating new bytecode. For instance,
ASM can be applied to implement a new programming language semantics (Groovy, Kotlin, Scala),
compiling the high-level programming idioms into bytecode capable for execution in the JVM.

http://asm.ow2.org

24All rights reserved. 2012 (c) ZeroTurnaround OÜ

ANDREY BRESLAV, KOTLIN
We didn't even consider using anything else instead of ASM, because
other projects at JetBrains use ASM successfully for a long time.

JOCHEN THEODOROU, GROOVY
My first touch with bytecode first hand was when I started helping in the Groovy project and by then we
settled to ASM. ASM can do what is needed, is small and doesn't try to be too smart to get into your way.
ASM tries to be memory and performance effective. For example you don't have to create huge piles of
objects to create your bytecode. It was one of the first with support for invokedynamic btw. Of course it
has its pro and con sides, but all in all I am happy with it, simply because I can get the job done using it.

CÉDRIC CHAMPEAU, GROOVY
I mostly know about ASM, just because it's the one used by Groovy :) However,
knowing that it's backed by people like Rémi Forax, who is a major contributor in the
JVM world is very important and guarantees that it follows the latest improvements.

25All rights reserved. 2012 (c) ZeroTurnaround OÜ

To give you a very gentle introduction we will generate a “Hello World”
example using the ASM library and add a loop to print the phrase an
arbitrary number of times.

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println(“Hello, World!”);

 }

}

The most common scenario to generate bytecode that corresponds to
the example source, is to create ClassWriter, visit the structure – fields,
methods, etc, and after the job is done, write out the final bytes.

First, let’s construct the ClassWriter instance:

 ClassWriter cw = new ClassWriter(

 ClassWriter.COMPUTE_MAXS |

 ClassWriter.COMPUTE_FRAMES);

The ClassWriter instance can be instantiated with some constants that
indicate the behavior that the instance should have. COMPUTE_MAXS tells
ASM to automatically compute the maximum stack size and the maximum
number of local variables of methods. COMPUTE_FRAMES flag makes ASM
to automatically compute the stack map frames of methods from scratch.

The define a class we must invoke the visit() method of ClassWriter:

 cw.visit(

 Opcodes.V1_6,

 Opcodes.ACC_PUBLIC,

 "HelloWorld",

 null,

 "java/lang/Object",

 null);

Next, we have to generate the default constructor and the main method. If
you skip generating the default constructor nothing bad will happen, but it
is still polite to generate one.

 MethodVisitor constructor =

 cw.visitMethod(

 Opcodes.ACC_PUBLIC,

 "<init>",

 "()V",

 null,

 null);

 constructor.visitCode();

 //super()
 constructor.visitVarInsn(Opcodes.ALOAD, 0);

 constructor.visitMethodInsn(Opcodes.INVOKESPECIAL,

 "java/lang/Object", "<init>", "()V");

 constructor.visitInsn(Opcodes.RETURN);

 constructor.visitMaxs(0, 0);

 constructor.visitEnd();

26All rights reserved. 2012 (c) ZeroTurnaround OÜ

We first created the constructor using the visitMethod() method. Next, we indicate that we’re now
about to start generating the body of the constructor by calling visitCode() method. At the end
we call to visitMaxs() - this is to ask ASM to recompute the maximum stack size. As we indicated
that ASM can do that for us automatically using COMPUTE_MAXS flag in ClassWriter’s constructor,
we can pass in random arguments to visitMaxs() method. At last, we indicate that the generating
bytecode for the method is complete with visitEnd() method.

Here’s what ASM code for main method looks like:

 MethodVisitor mv = cw.visitMethod(
 Opcodes.ACC_PUBLIC + Opcodes.ACC_STATIC,

 "main", "([Ljava/lang/String;)V", null, null);

 mv.visitFieldInsn(Opcodes.GETSTATIC, "java/lang/System",

 "out", "Ljava/io/PrintStream;");

 mv.visitLdcInsn("Hello, World!");

 mv.visitMethodInsn(Opcodes.INVOKEVIRTUAL, "java/io/PrintStream",

 "println", "(Ljava/lang/String;)V");

 mv.visitInsn(Opcodes.RETURN);

 mv.visitMaxs(0, 0);

 mv.visitEnd();

By calling the visitMethod() again, we generated the new method definition with the name,
modifiers and the signature. Again, visitCode(), visitMaxs() and visitEnd() methods are used the
same way as in case with the constructor.

As you can see the code is full of constants, “flags” and “indicators” and the final code is not very
fluently readably by human eyes. At the same time, to write such code one needs to keep in mind
the bytecode execution plan to be able to produce correct version of bytecode. This is what makes
writing such code rather a complicated task. This is where everyone has his own approach it
writing code with ASM.

27All rights reserved. 2012 (c) ZeroTurnaround OÜ

ANDREY BRESLAV, KOTLIN
Our approach is using Kotlin's ability to enhance existing Java APIs: we
created some helper functions (many of them extension functions) that
make ASM APIs look very much like a bytecode manipulation DSL.

JOCHEN THEODOROU, GROOVY
I built some meta api into the compiler. For example it let's you do a swap, regardless of the
involved types. It was not in the links above, but I assume you know, that double and long consume
two slots, while anything else does only one. The swap instruction handles only the 1-slot version. So
if you have to swap an int and a long, a long and an int or a long and a long, you get a different set of
instructions. I also added a helper API for local variables, to avoid to have to manage the index.
If you want more nice looking code... Cedric wrote a Groovy DSL to generate bytecode. It is still the
bytecode more or less, but less method around to make it less clear.

CÉDRIC CHAMPEAU, GROOVY
ASM is a nice low-level API, but I think we miss an up-to-date higher level API, for
example for generating proxies and so on. In Groovy we want to limit the number
of dependencies we add to the project, so it would be cool if ASM provided this out-
of-the-box, but the general idea behind ASM is more to stick with a low level API.

28All rights reserved. 2012 (c) ZeroTurnaround OÜ

ASM and Tooling
The tools can be a great help for studying and working with bytecode. The
best way to learn to use ASM is to write a Java source file that is equivalent to
what you want to generate and then use the ASMifier mode of the Bytecode
Outline plugin for Eclipse (or the ASMifier tool) to see the equivalent ASM
code. If you want to implement a class transformer, write two Java source
files (before and after transformation) and use the compare view of the
plugin in ASMifier mode to compare the equivalent ASM code.

Bytecode outline plugin view in Eclipse

For IntelliJ IDEA users there’s the ASM bytecode outline plugin available in the
plugins repository and it is quite easy to use too. Right click in the source and
select Show Bytecode outline - this will open a view with the code generated
by the ASMifier tool.

ASM outline plugin in IntelliJ IDEA

You can also apply the ASMifier directly, without the IDE plugin, as it is a
part of ASM libabray:

$java -classpath "asm.jar;asm-util.jar" \

 org.objectweb.asm.util.ASMifier \

 HelloWorld.class

29All rights reserved. 2012 (c) ZeroTurnaround OÜ

CÉDRIC CHAMPEAU, GROOVY
Actually, I wrote the "bytecode viewer" plugin for IntelliJ IDEA, and I'm using
it quite often :) On the Groovy side, I also use the AST browser view, which
provides a bytecode view too, although it seriously needs improvements.

JOCHEN THEODOROU, GROOVY
My tools are mostly org.objectweb.asm.util.Textifier and org.objectweb.asm.util.CheckClassAdapter. Some time ago I also
wrote a tool helping me to visualize the bytecode and the stack information. It allows me to go through the bytecode and
see what happens on the stack. And while bytecode used to be a pita to read for me in the beginning, I have seen so much
of it, that I don't even use that tool anymore, because I am usually faster just looking at the text produced by Textifier.

That is not supposed to tell you I am good at generating bytecode... no no.. I wouldn't be able to read it so good if I
had not the questionable pleasure of looking at it countless times, because there again was a pop of an empty stack or
something like that. It is more that the problems I have to look for tend to repeat themselves and I have a whit of what to
look for even before I fire up Textifier

ANDREY BRESLAV, KOTLIN
We use ASM bytecode outline for IntelliJ IDEA and our own similar
plugin that displays bytecodes generated by our compiler.

30All rights reserved. 2012 (c) ZeroTurnaround OÜ

Fun stories from bytecode experts
We asked Andrey, Jochen and Cédric to share some fun facts from their experiences with Java bytecode.
While the words “bytecode” and “fun” might not stick very well together there are still cases to learn from
and the guys warmly share the experiences:

JOCHEN THEODOROU, GROOVY
Hmm... bytecode and fun? What a strange combination of words in the same sentence ;)

Well.. one time maybe a little... I told you about the API I use to do a swap. In the beginning it was not working properly
of course. That was partially due to me misunderstanding one for those DUP instructions, but mainly it was because I
had a simple bug in my code in which I execute the 1-2 swap instead of the 2-1 swap (meaning swapping 1 and 2 slot
operands). So I was looking at the code, totally confused, thinking this should work, looking at my code... then thinking I
made it wrong with those dups and replacing the code with my new understanding...

All the while the code was not really all that wrong, only the swap cases where swapped. Anyway... after about a full day
of getting a headache from too much looking at the bytecode I finally found my mistake and looked at the code to find
it looks almost the same as before... and then it dawned on me, that it was only that simple mistake, that could have
been corrected in a minute and which took me a full day. Not really funny, but there I laughed a bit at myself actually.

31All rights reserved. 2012 (c) ZeroTurnaround OÜ

CÉDRIC CHAMPEAU, GROOVY
Actually, the funniest thing was when I wrote the "bytecode DSL" for Groovy, which allows you to write bytecode
directly in the body of a method, using a DSL which is very close to what the ASM outline provides, and a nicer "groovy
flavoured" DSL too. Although I started this project as a proof-of-concept and a personal experiment, I received a lot of
feedback and interest about it.

Today I think it's a very simple way to have people test bytecode directly, for example for students. It makes writing
bytecode a lot easier than using ASM directly. However, I also received a lot of complains, people saying I opened the
Pandora box and that it would produce unreadable code in production :D (and I would definitely not recommend using
it in production). Yet, it's been more than one year the project is out, and I haven't heard of anyone using it, so probably
bytecode is really not that fun!

ANDREY BRESLAV, KOTLIN
Many fun things come in connection with Android: Dalvik is very picky about your bytecode conformance to the JVM spec.
And HotSpot doesn't care a bit about many of these things. We were running smoothly on HotSpot for a long time, without
knowing that we had so many things done wrong. Now we use Dalvik's verifier to check every class file we generate, to make
sure nobody forgot to put ACC_SUPER on a class, proper offsets to a local variable table, and things like that.

We also came across a few interesting things in HotSpot, for example, if you call an absent method on an array object (like
array.set()), you don't get a NoSuchMethodError, or anything like that. What you get (what we got on a HotSpot we had a
year ago, anyway) is... a native crash. Segmentation fault, if I am not mistaken. Our theory is that the vtable for arrays if so
optimized that it is not even there, and lookup crashes because of that.

32All rights reserved. 2012 (c) ZeroTurnaround OÜ

Anton Arhipov is Software Engineer and JRebel Product Lead at ZeroTurnaround.

Professional interests include programming laguages, middleware and tooling.

Java enthusiast, vim fan, IntelliJ addict, loves tea and doesn't drink coffee. Anton is

ZeroTurnaround representative at JCP for JSR342 (Java EE 7) and he is also a JetBrains

Academy member. Anton has delivered talks at international Java conferences: Jfokus,

JavaZone, EclipseCon, JavaOne, 33rd Degree, GeeCON and various JUG meet ups.

ABOUT THE AUTHOR
ANTON ARHIPOV

33All rights reserved. 2012 (c) ZeroTurnaround OÜ

RebelLabs
is the re

search &
 content

division
of ZeroTurna

round

Estonia
Ülikooli 2, 5th floor
Tartu, Estonia, 51003
Phone: +372 740 4533

This report is brought to you by:
Anton Arhipov, Erkki Lindpere, Ryan St. James & Oliver White

USA
545 Boylston St., 4th flr.
Boston, MA, USA, 02116
Phone: 1(857)277-1199

Contact
Us

Twitter: @RebelLabs
Web: http://zeroturnaround.com/rebellabs
Email: labs@zeroturnaround.com

https://twitter.com/RebelLabs
http://zeroturnaround.com/rebellabs
labs@zeroturnaround.com

